
NNDT –
A Neural Network Development Tool

version 1.2

User's Guide

B. Saxén and H. Saxén
Department of Chemical Engineering

Åbo Akademi University
Biskopsgatan 8, FIN-20500 Åbo, Finland

E-mail: bjorn.saxen@abo.fi, henrik.saxen@abo.fi

March 1995

1

1 Introduction

The use of neural network models normally involves specification and analysis of a large
number of parameters as well as large data sets. The availability of software with an interactive
graphical user interface facilitates the development of such models. A program for network
training and evaluation, the Neural Network Development Tool (NNDT), has been developed.
The program includes models for feed-forward and (discrete time) recurrent neural networks
and routines for graphical presentation of the results. The user-interface, which runs under
Microsoft Windows, is developed with MS Visual Basic 3.0 professional edition while the
network calculations and the training method are implemented in C and compiled to dynamic-
link library (DLL) routines. In this manual, the features of NNDT (version 1.1) are presented;
the network models are described and the user interface is illustrated with two examples.

2 Network Models

The program implements feedforward and recurrent multilayer perceptron (MLP) networks
[1]. In the model for feedforward networks (Figure 1a), there is an input layer, possible hidden
layers, and an output layer. Up to three hidden layers and up to 15 nodes per layer can be used.
The elements, or nodes, in the input (lowermost) layer only receive the input signals and
distribute them forward to the network. In the upper layers, each node receives a signal which
is a weighted sum of the outputs of the nodes in the layer below. To node i in an upper layer, l,
the total input x is given by

x w yi
l

ij
l

j
l

j

N l

= −

=

−

∑ 1

0

1

, (1)

where N is the number of nodes, wij is the weight for the connection between node j and node i
and yj is the output of node j. Each node i has a bias, represented by the weight wi0 from a
node with a constant unit activation (y0 1≡). As an optional feature, direct (by-pass)
connections between input and output nodes can be used in networks with hidden layers. If
such connections are used, the total input to node i in the output layer, L+1, is given by

x w y b yi
L

ij
L

j
L

j

N

ij j

j

NL

+ +

= =
= +∑ ∑1 1

0

0

1

0

, (2)

where bij is the weight for the connection between node i in the output layer and node j in the
input layer, 0. The network weights and the bias terms are estimated by the training method
described in Chapter 3.

The output of a node in a hidden or output layer is obtained through a nodal activation
function, which uses the node input as argument. Four different activation functions can be
used; the (standard) sigmoid from 0 to 1

y
e x

=
+ −

1

1
, (3)

2

the symmetric logarithmoid [2]

y
x

x
x= +ln()1 , (4)

the linear (identity) function

y x= , (5)

and the sigmoid from -1 to 1

y
e

x
x

= − +
+

= FH IK−1
2

1 2
tanh . (6)

Different node activation functions can be specified for each layer in the network. The signals
from the nodes in the output layer form the network output.

In the model for recurrent networks (Figure 1b), the feedforward network is modified by
including feedback connections with unit time lag from nodes in the output layer to nodes in
the input layer. The feedback signals can either be taken from nodes with target values (true
output nodes) or from additional fictitious output nodes. For each feedback connection
specified, an additional node in the input layer, a fictitious input node, is created. Each
fictitious input node has a trainable initial state, y0 , which corresponds to the node's activation
for the first pattern in training (cf. Chapter 3); several initial states can be estimated to utilise
training data composed of separate periods. The initial states are estimated by the training
method. Since the fictitious output nodes act as internal network elements, the need for hidden
layers is reduced for this type of networks. In contrast to feedforward networks, the recurrent
ones do not necessarily require input signals, since they can implement autonomous systems.
The feedback nodes, and, specially, the fictitious output nodes, may here act as internal states

of the model [3].

I n p u t s i g n a l s

a) b)

Output signals

Input signals

O u t p u t s i g n a l s

1

1

1

Figure 1. Illustration of the network models.
a) A feedforward network with three input nodes, two output nodes and one hidden

layer with five nodes.
b) A recurrent network with two true input nodes, three true output nodes and two

feedback connections, one from a true output and the other from a fictitious
output node.

3

3 Network Training

The network training is the procedure where the unknowns, i.e. weights, bias terms and initial
states for fictitious input nodes, are adjusted based on numerical training data. The training
data is a set of patterns consisting of input signals and corresponding output signals, so called
target values. The goal is to find a network which describes the input-output relation
represented by the training patterns. For recurrent networks with no true input nodes, the
training data represents time-series for the output signals instead of input-output relations. The
Levenberg-Marquardt method [4] is used to adjust the unknown network parameters in order
to minimise the sum of squares (SSQ) of residuals, calculated as the differences between
network outputs and target outputs. The problem can be formulated as

min
w

r rE T=n s (7)

where r is the residual vector and the network unknowns are collected into a vector, w,
according to

w = + + + +
+ +

+ +

(,..., ,..., ,..., ,..., ,..., ,..., ,..., ,

,..., ,..., ,...,

w w w w w w w w

b b b b

N N N N

L

N

L

N

L

N N

L

N N N N

L L L L

L L

10
1

1
1

0
1 1

10
1

1

1
0

1 1

11 1 1

0 1 1 0 1 1

0 1 1 0

to first node

weights to first hidden layer weights to output layer

bypass (

6 744 844
1 2444444 3444444 1 24444444 34444444

input - output) connections initial states
1 2444444 3444444 1 24444 34444, ,..., ,..., ,...,)y y y yk m mk11

0
1
0

1
0 0

(8)

where Nl is the number of nodes in layer l, L is the number of hidden layers, k is the number of
fictitious input nodes and m is the number of periods with separate initial states. At each
iteration, i, the optimisation method adjusts the unknowns according to

w w() () ()i i i+ = +1 δδ (9)

where the correction, δδ, is obtained from

J J I J r() () () () () ()i i T i i i i+ = −λe jδδ (10)

In the equation above, J is the Jacobian matrix with first derivatives of the residuals with
respect to the unknowns and I is the identity matrix. The Marquardt parameter λ is
automatically adjusted during the training [5]; the method approaches Gauss-Newton if λ → 0
and steepest descent with a small step length if λ → ∞. Analytical expressions are derived for
calculation of the Jacobian [6].

4 Additional Features

The data in the pattern file can be filtered by feeding it through a sliding window where
arithmetic mean values are calculated. The size of the training set can be reduced by specifying
that only every n:th (filtered) observation be used for training. Also, the user can specify the
number of lines to be ignored in the beginning of the pattern file and give a limit for the number

4

of patterns to be used in training. In addition to the pattern file with training data, the user can
specify a separate test file. The test file option enables evaluation of the generalisation
properties of the network throughout training by means of observations which are not included
in the training data. The test data is fed through the network after each iteration and the root
mean square (rms) error, E M/ , where M is the number of residuals, for the test patterns is
presented. The result from a training or an evaluation, i.e. input signals, node activations and
target values for all patterns can be saved in a file for later use.

For certain problems, the training method may abort at a solution far from optimum due to
saturation of nodes caused by single large weight values. To overcome this difficulty, several
methods for limiting the weight values are implemented. In the first method, box constraints
for the weight values can be specified. In the second method, an upper limit for the relative
weight change, δ j jw/ , is given. In both methods, the step suggested by the search method is
restricted if the change in any parameter would exceed the limits. The third method prevents
large weight values by introducing a penalty term as an additional residual to be minimised in
the training. The penalty residual is calculated as

r wM i

i

n

+
=

= ∑1
1

γ , (11)

where γ is a (non negative) factor specified by the user, M is the (original) number of residuals
and n is the total number of unknowns in the network.

There is a possibility to reduce the number of parameters in the network by keeping some of
the network weights constant during training, or, keeping the values of some weights equal.
For a weight which is specified as constant, the initial value is used throughout training.

For recurrent networks with feedback connections from true output nodes, the convergence in
training may be enhanced if the target values, instead of network outputs, are fed back
occasionally. The user specifies the interval between such teacher forcing actions [7].

5 User Interface

The user interface, developed with MS Visual Basic 3.0, was built to be both flexible and easy
to use. All parameters defining the network and its training are presented in setup windows and
stored in a file which subsequently can be read by the program. On-line help is available for all
windows in the program, the help page is shown by pressing F1. The training can be
interrupted at any time retaining all network information. Although the user interface is mainly
developed for interactive use, non-interactive runs may be carried out by starting the program
with optional command line arguments. Also, several instances of the program may run
simultaneously.

During training, the network and its performance can be analysed in several ways. Network
outputs and desired outputs are presented in a graph which is updated after each iteration.
Alternatively, the residuals (i.e. differences between network outputs and desired outputs), the
weights or the activations of internal network nodes can be plotted. The sum of squared errors
(SSQ), the rms error and the Marquardt parameter (λ) are shown after each iteration and

5

written to a log table, which can be analysed later. In a window showing the training progress,
the rms error is plotted vs. iteration index. If a test file is used, the rms error for the test
patterns is also plotted. The graphs can be copied to the clipboard as Windows metafiles.
Network weights, initial states for fictitious input nodes and node activations are easily
examined in the network state window.

In the following sections, the user interface is illustrated with two examples. The basic settings
for a feed-forward network, file specifications, etc. are explained in the first example whereas
the specification of a recurrent network and the use of some options associated with this
network type is shown in the second example.

6 Example I: A Feed-Forward Network

This example shows how basic settings are made for a feed-forward network and how node
saturation is avoided by weight restriction during an initial training phase. The training data is
created using the relations

f x x

f x x

1

2

0

0

() max(sin(),)

() min(sin(),)

=
=

which can be interpreted as the sine function divided into a positive and a negative part. The
pattern file holds values for x in a range from 0 to 10 and corresponding values for f1 and f2 .
The first lines of the file and an illustration of the data is shown below.

x f1(x) f2(x)

0 0 0

0.1 0.099833 0

0.2 0.198669 0

0.3 0.29552 0

.

.

.

X

-1

-0.5

0

0.5

1

0 2 4 6 8 10

f1 f1

f2

The columns in the pattern file are separated with tabs, but space(es) can also be used as
column separators. We use a network with one hidden layer for the example problem, x is
chosen as network input whereas the desired outputs are f1 and f2 .

The main window of the program, which holds a picture of the network specified, is shown in
Figure 2. The name of current setup file is displayed in the title bar. During a run, information
about the training progress is shown. Other windows are accessed from menus in the main
window. A description of the menu items and the other windows of the program is given
below.

6

 Figure 2.

File Menu

The File menu is used for reading
and saving setup information and
for exiting the entire program.

• New setup selects a network with only one input node and one output node and sets all
configuration parameters to default values. However, the setup of a new network is usually
started by opening an existing setup file.

• Open setup... displays
a common dialog box for
file selection, see Figure
3. In the present
example, the setup is
read from a file named
sin_0.mlp. (Each time
NNDT is started, the
setup file used in
previous session is
automatically read.) Figure 3.

• Save setup writes the actual setup information to the setup file last selected.

• Save setup as... displays a dialog box for setup file selection and writes the actual setup
information to the chosen file.

7

Setup Menu

• Pattern file... opens a
form for specification of
the pattern file. The
pattern file setup form for
the present example is
shown in Figure 4.

Figure 4.

The file name is selected
in a dialog box. If the
user wants to modify the
contents of the pattern
file between subsequent
trainings, the box below
the file name should be
checked to ensure that
the file is read every time. The names (x, f1 and f2) and locations (column 1, 2 and 3) for
input and output variables are filled in the table. The number of header lines (i.e. lines to be
ignored in the beginning of the file) is also specified.

The button named Scaling opens a
form where scale factors for the
pattern data can be specified, see
Figure 5. In the example pattern file,
the value of f2 is in the interval [-
1,0]. Since we want to use the
sigmoidal activation function (1) for Figure 5.

the nodes in the output layer, we specify a factor -1 which transforms f2 to the interval
[0,1]. (Also real values may be used as scale factors.)

• Test file... is used to specify an optional file with test patterns. The test patterns are not
used for training but the network is evaluated with the test patterns after each iteration,
which may indicate whether overtraining occurs [8,9]. The locations (columns) of the
variables in the test file must match those in the pattern file and all data pre-treatment
parameters specified for the training (see Setup|Network...) are used also for the test data.
In this present example, no test file is used.

8

• Output file... specifies an
optional file which holds
data created by feeding the
training or test patterns to
the network after training.
The output file is normally
used when further analysis
or graphical presentation
of the results is needed. In
the present example, we
choose to write the pattern
index and the activations
of the hidden nodes to the
output file, see Figure 6. Figure 6.

• Log file... specifies an optional file which, after each iteration, is updated with time (from
the computer's clock), iteration number, SSQ, rms error and the Marquardt parameter (λ).
If a test file is used, the rms error for the test set may also be written to the log file. The log
file is especially suited for non-interactive runs, while the log table (see Show menu) is
available interactively.

• Network type specifies the network algorithm, so far only MLP networks are available.

• Network... opens the MLP setup window, shown in Figure 7, which is the main form for
specifying network configuration and training options.

In the frame for training specifications, the first boxes are used for selecting pre-treatment
of the data in the pattern (and test) file. A sliding-window mean value filter is available and
the size of the training data can be reduced by specifying the number of lines to be read
from the pattern file
before each new
pattern is formed. In
the present example,
the data pre-treatment
is switched off. The
next box in the frame
specifies the total
number of (filtered)
patterns to be formed
from the pattern file
data. In the example,
only the first 95
patterns in the file are
used. The
optimisation task
switch is used for
specification of the Figure 7.

